ENGI-240: PROPERTIES OF MATERIALS

Engineering Courses Updates Fall 2023 Course

- ENGI-110: Introduction to Engineering
- ENGI-240: Properties of Materials
- ENGI-241: Engineering Mechanics: Statics
- ENGI-242: Circuits 1

Effective Term

Fall 2024

CC Approval 10/6/2023

AS Approval 10/10/2023

BOT Approval 10/19/2023

SECTION A - Course Data Elements

Send Workflow to Initiator No

CB04 Credit Status Credit - Degree Applicable

Discipline

Minimum Qualifications

Engineering (Master's Degree)

Subject Code ENGI - Engineering Course Number 240

Department Engineering (ENGI)

Division Science and Engineering (SE)

Full Course Title Properties of Materials

Short Title Properties of Materials

CB03 TOP Code 0901.00 - Engineering, General (requires Calculus) (Transfer)

CB08 Basic Skills Status NBS - Not Basic Skills

CB09 SAM Code E - Non-Occupational

Rationale Last update was longer than 6 years. Update to SLOs, content and textbooks. And/Or

SECTION B - Course Description

Catalog Course Description

This is an introductory course on the properties of engineering materials and how their overall properties relate to internal structure. Topics include: atomic structure and bonding; crystal structure; phases and phase diagrams; properties (mechanical, electrical, magnetic, optical) and structure of metals, polymers, ceramics and composites; mechanical deformation and fracture; taxonomy systems; corrosion and processing methods.

SECTION C - Conditions on Enrollment

Open Entry/Open Exit

No

Repeatability

Not Repeatable

Grading Options Letter Grade Only

Allow Audit

Yes

Requisites

Prerequisite(s) Completion of CHEM-120 and PHYS-140 with a minimum grade of C.

Requisite Justification

Requisite Description Course Not in a Sequence

Subject CHEM Course # 120

Level of Scrutiny Required by 4-Year Institution

Explanation

1 semester college-level general chemistry (e.g., CHEM 110 General Chemistry for Science Majors I, with Lab) listed in C-ID descriptor for Materials Science and Engineering (ENGI 140)

Requisite Description

Course Not in a Sequence

Subject

PHYS Course # 140

Level of Scrutiny Required by 4-Year Institution

Explanation

1 semester calculus-based physics (e.g., PHYS 205 Calculus-Based Physics for Scientists and Engineers: A) listed in C-ID descriptor for Materials Science and Engineering (ENGI 140)

SECTION D - Course Standards

Is this course variable unit? No

Units 4.00000

Lecture Hours 54.00

Lab Hours 54.00

Outside of Class Hours 108

Total Contact Hours 108

Total Student Hours 216

Distance Education Approval

Is this course offered through Distance Education? Yes

Online Delivery Methods

DE Modalities	Permanent or Emergency Only?
Entirely Online	Permanent
Hybrid	Permanent
Online with Proctored Exams	Permanent

SECTION E - Course Content

Student Learning Outcomes

	Upon satisfactory completion of the course, students will be able to:
1.	Know and understand the types of atomic bonding and crystal structures; and how diffusion operates and relates to defects and vacancies in material structures.
2.	Know and understand the importance of engineering properties (mechanical, electrical, optical) of materials (metal, ceramics/glasses, polymers, and composites), how they relate to internal structure, and the cause and underling mechanisms of the failure modes of fatigue, fracture, and creep.
3.	Demonstrate knowledge and understanding of common thermal processing methods for alloys, their underlying mechanisms, their effect on material processes, and be able to interpret and use phase diagrams.

Course Objectives

	Upon satisfactory completion of the course, students will be able to:
1.	Fundamentally explain material (metals, ceramic/glasses, polymers, composites, and semiconductors) properties, atomic structure and their relationship.
2.	Fundamentally explain the material behavior in response to stimuli (load, temperature, chemistry).
3.	Understand and explain failure mechanisms of materials.
4.	Understand and explain mechanism of diffusion and its role in material behavior.
5.	Understand the role of phase and ITT diagrams in thermal processing of alloys.
6.	Understand the role of material selection in engineering design.
7.	Have the ability to make appropriate selections of material for an application.

8. Solve problems involving properties of materials including crystallography, Arrhenius type equations, property averaging of composite materials, and intrinsic and extrinsic semiconductors.

9. Write formal lab reports.

Course Content

- 1. Materials for Engineering
 - a. The Material World
 - b. Materials Science and Engineering
 - c. Six Materials That Changed Your World
 - d. Processing and Selecting Materials
 - e. Looking at Materials by Powers of Ten
- 2. Atomic Bonding
 - a. Atomic Structure
 - b. The Ionic Bond
 - c. The Covalent Bond
 - d. The Metallic Bond
 - e. The Secondary, or van der Waals, Bond
 - f. Materials-The Bonding Classification
- 3. Crystalline Structure-Perfection
 - a. Seven Systems and Fourteen Lattices
 - b. Metal Structures
 - c. Ceramic Structures
 - d. Polymeric Structures
 - e. Semiconductor Structures
 - f. Lattice Positions, Directions, and Planes
 - g. X-Ray Diffraction
- 4. Crystal Defects and Noncrystalline Structure Imperfection
 - a. The Solid Solution–Chemical Imperfection
 - b. Point Defects-Zero-Dimensional Imperfections
 - c. Linear Defects, or Dislocations-One-Dimensional Imperfections
 - d. Planar Defects-Two-Dimensional Imperfections
 - e. Noncrystalline Solids-Three-Dimensional Imperfections
- 5. Diffusion
 - a. Thermally Activated Processes
 - b. Thermal Production of Point Defects
 - c. Point Defects and Solid-State Diffusion
 - d. Steady-State Diffusion
 - e. Alternate Diffusion Paths
- 6. Mechanical Behavior
 - a. Stress Versus Strain
 - b. Elastic Deformation
 - c. Plastic Deformation
 - d. Hardness
 - e. Creep and Stress Relaxation
 - f. Viscoelastic Deformation
- 7. Thermal Behavior
 - a. Heat Capacity
 - b. Thermal Expansion
 - c. Thermal Conductivity
 - d. Thermal Shock
- 8. Failure Analysis and Prevention
 - a. Impact Energy
 - b. Fracture Toughness
 - c. Fatigue
 - d. Nondestructive Testing
 - e. Failure Analysis and Prevention
- 9. Phase Diagrams

- a. The Phase Rule
- b. The Phase Diagram
- c. The Lever Rule
- d. Microstructural Development During Slow Cooling
- 10. Kinetics-Heat Treatment
 - a. Time-The Third Dimension
 - b. The T T T Diagram
 - c. Hardenability
 - d. Precipitation Hardening
 - e. Annealing
 - f. The Kinetics of Phase Transformations for Nonmetals

PART II Materials and Their Applications

- 1. Structural Materials-Metals, Ceramics, and Glasses
 - a. Metals
 - b. Ceramics and Glasses
 - c. Processing the Structural Materials
- 2. Structural Materials-Polymers and Composites
 - a. Polymers
 - b. Composites
 - c. Processing the Structural Materials
- 3. Electronic Materials
 - a. Charge Carriers and Conduction
 - b. Energy Levels and Energy Bands
 - c. Conductors
 - d. Insulators
 - e. Semiconductors
 - f. Composites
 - g. Electrical Classification of Materials
- 4. Materials in Engineering Design
 - a. Material Properties-Engineering Design Parameters
 - b. Selection of Structural Materials
 - c. Selection of Electronic Materials
 - d. Materials and Our Environment

Lab Content (Lab activities need to be detailed and compliment the lecture content of the course):

- 1. Lab activities include:
- 2. Experiments,
- 3. Simulations,
- 4. Investigations and Presentations, and Demonstrations.

The lab activity topics include:

- 1. Characterization of properties of materials
- 2. Measuring Stress and Strain
- 3. Thermal Expansion
- 4. Failure Analysis: Fatigue
- 5. Microstructural Development During Slow Cooling
- 6. Corrosion
- 7. Materials and Our Environment
- 8. Making a Conductor from a Non-conductor
- 9. Materials of the Future: Polymers and Composites
- 10. Properties of Materials in Engineering Design
- 11. Investigate and Present Results of Engineering Situations/Cases/Projects Involving Properties of Materials
- 12. Run simulations demonstrating material (metals, ceramic/glasses, polymers, composites, and semiconductors) properties, atomic structure and their relationship.

Write a laboratory report for each experiment that includes a discussion comparing experimental, theoretical, and/or simulated results.

Methods of Instruction

Methods of Instruction

Туреѕ	Examples of learning activities
Discussion	Applications of engineering materials, Ethics involving material selection, Processing of materials
Lecture	Lectures covering course content.
Other	Demonstrations. Computer simulations. Video presentations.
Lab	Density and Atomic Structure, Viscosity, Diffusion, Crystal Defects

Instructor-Initiated Online Contact Types

Announcements/Bulletin Boards Chat Rooms Discussion Boards E-mail Communication Video or Teleconferencing

Student-Initiated Online Contact Types

Chat Rooms Discussions Group Work

Course design is accessible

Yes

Methods of Evaluation

Methods of Evaluation

Types	Examples of classroom assessments
Homework	Homework Assignments (End of the Chapter Problems, Problems from a Handout, Reading Assignments)
Exams/Tests	Midterm Exams Final Exam
Lab Activities	Lab Participation and Reports Examples: 1. Calculate the density of Schottky pairs (in m^-3) in MgO if the fraction of vacant lattice sites is 5x10^-6. The density of MgO is 3.60 Mg/m^3. 2. A 10-mm diameter rod of 3003-H14 aluminum alloy is subjected to a 6-kN tensile load. Calculate the resulting rod diameter.
Projects	Final Project (Case Studies, Applications of Six Engineering Materials)

Assignments

Reading Assignments

Read assignments from the text and class handouts. Examples:

1. Read Section 3.3 on Ceramic Structures

2. Read Section 8.5 on Failure Analysis & Prevention

Writing Assignments

Complete all written and oral assignments, including homework assignments. Complete all laboratory reports. Complete circuit simulation assignments.

Examples:

1. Describe qualitatively the microstructural developmental during the slow cooling of a 30:70 brass (Cu with 30 wt % Zn).

2. A soda-lime-silica glass used to make lamp bulbs has an annealing point of 514 degrees C and a softening point of 696 degrees C. Calculate the working range and the melting range for this glass.

Other Assignments

Homework Problems (Sample Problems):

For a steel furnace, silica refractories have corrosion rates of 2.0x10⁻⁷ m/s at 1345[#]C and 9.0x10⁻⁷ m/s at 1510[#]C. Calculate the activation energy for the corrosion of these silica refractories.

Manufacturing traditional clayware ceramics typically involves driving off the water of hydration in the clay minerals. The rate constant for the dehydration of kaolinite, a common clay mineral, is $1.0x10^{-4}$ s⁻¹ at 485[#]C and $1.0x10^{-3}$ s⁻¹ at 525[#]C. Calculate (a) the activation energy for the dehydration of kaolinite, (b) the rate constant at 600[#]C.

SECTION F - Textbooks and Instructional Materials

Material Type

Textbook

Author

James Shackelford

Title

Introduction to Materials Science for Engineers

Edition/Version

9th

Publisher

Pearson

Year 2021

ISBN #

9780135650127

Material Type

Textbook

Author

William Smith and Javad Hashemi

Title

Foundations of Materials Science and Engineering

Edition/Version

7th

Publisher

McGraw Hill

Year 2023

ISBN # 9780135650127

Proposed General Education/Transfer Agreement

Do you wish to propose this course for a UC Transferable Course Agreement (UC-TCA)? Yes

Course Codes (Admin Only)

ASSIST Update

No

C-ID Approval Dates

C-ID Descriptor	Approval Date
C-ID ENGR 140 B Materials Science and Engineering	2/12/2016

CB00 State ID

CCC000337743

CB10 Cooperative Work Experience Status

N - Is Not Part of a Cooperative Work Experience Education Program

CB11 Course Classification Status

Y - Credit Course

CB13 Special Class Status

N - The Course is Not an Approved Special Class

CB23 Funding Agency Category

Y - Not Applicable (Funding Not Used)

CB24 Program Course Status Program Applicable

Allow Pass/No Pass

No

Only Pass/No Pass

Reviewer Comments

Stacey Howard (showard) (Thu, 28 Sep 2023 17:52:53 GMT): Added anticipated Fall 2023 effective date as no rearticulation required. Stacey Howard (showard) (Thu, 28 Sep 2023 18:25:31 GMT): Selected anticipated fall 2023 begin date as no rearticulation required for existing CSU/UC transferability. No matching C-ID descriptor currently.

Stacey Howard (showard) (Thu, 28 Sep 2023 18:26:38 GMT): Correction on last comment: Anticipated fall 2024 implementation.

Stacey Howard (showard) (Thu, 28 Sep 2023 18:45:37 GMT): ENGI 160 - Anticipated Fall 2024 begin date of COR update ok as no rearticulation for CSU/UC transferability required. Changed term from fall 2025 to 2024. Please add "group" to term or final project. Highly recommended to add this as UC Davis will not articulate this course for any applicable major agreement in ASSIST without inclusion of a group term project. Thank you!

Stacey Howard (showard) (Thu, 28 Sep 2023 19:21:38 GMT): ENGR 242 - Suggestion addition of Differential Equations (C-ID MATH 240) as co-requisite. Previous C-ID denial due to missing co-req as per C-ID ENGR 260 descriptor and reviewer.

Stacey Howard (showard) (Thu, 28 Sep 2023 19:58:57 GMT): ENGI 240 - Anticipated fall 2024 implementation ok as CSU/UC rearticulation is not required.

Stacey Howard (showard) (Thu, 28 Sep 2023 20:10:50 GMT): ENGR 241 - Anticipated begin date of fall 2024 ok as CSU/UC rearticulation not required. C-ID ENGR 130 submission expired. Resubmission required.