

COMS 218 - Discrete Structures Course Outline

Approval Date: 03/11/2021 **Effective Date:** 08/13/2021

SECTION A

Unique ID Number CCC000623853 Discipline(s) Computer Science **Mathematics Division** Career Education and Workforce Development Subject Area Computer Studies Subject Code COMS Course Number 218 Course Title Discrete Structures TOP Code/SAM Code 0706.00 - Computer Science / E - Non-Occupational Rationale for adding this course to the Discrete Math is a required course in the Computer curriculum Science ADT Units 3 Cross List N/A Typical Course Weeks 18 Total Instructional Hours **Contact Hours**

Lecture 54.00

Lab 0.00

Activity 0.00

Work Experience 0.00

Outside of Class Hours 108.00

Total Contact Hours 0.00

Total Student Hours 108

Open Entry/Open Exit No

Maximum Enrollment 30

Grading Option Letter Grade or P/NP

Distance Education Mode of Instruction Hybrid Entirely Online Online with Proctored Exams

SECTION B

General Education Information:

SECTION C

Course Description

Repeatability May be repeated 0 times

Catalog This course will introduce the discrete structures used in Computer Science, **Description** with an emphasis on their applications. Topics covered include: Functions, Relations and Sets; Basic Logic; Proof Techniques; Basics of Counting; Graphs and Trees; and Discrete Probability.

Schedule Description

SECTION D

Condition on Enrollment

- 1a. Prerequisite(s)
 - COMS 215
- 1b. Corequisite(s): None

1c. Recommended

- MATH 108
- 1d. Limitation on Enrollment: None

SECTION E

Course Outline Information

1. Student Learning Outcomes:

- A. Explain the relationship between mathematical induction and recursion/recurrence equations, and their relationship to computing systems.
- 2. Course Objectives: Upon completion of this course, the student will be able to:
 - A. Describe how formal tools of symbolic logic are used to model real-life situations, including those arising in computing contexts such as program correctness, database queries, and algorithms
 - B. Apply the binomial theorem to independent events and Bayes' theorem to dependent events.
 - C. Demonstrate different traversal methods for trees and graphs.
 - D. Analyze a problem to create relevant recurrence equations.
 - E. Relate the ideas of mathematical induction to recursion and recursively defined structures.

F.

3. Course Content

- A. Functions, Relations and Sets
 - a. Functions (surjections, injections, inverses, composition)
 - b. Relations (reflexivity, symmetry, transitivity, equivalence relations)
 - c. Sets (Venn diagrams, complements, Cartesian products, power sets)
 - d. Pigeonhole principles
 - e. Cardinality and countability

- B. Basic Logic
 - a. Propositional logic
 - b. Logical connectives
 - c. Truth tables
 - d. Normal forms (conjunctive and disjunctive)
 - e. Validity
 - f. Predicate logic
 - g. Universal and existential quantification
 - h. Modus ponens and modus tollens
 - i. Limitations of predicate logic
- C. Proof Techniques
 - a. Notions of implication, converse, inverse, contrapositive, negation, and contradiction
 - b. The structure of mathematical proofs
 - c. Direct proofs
 - d. Proof by counterexample
 - e. Proof by contradiction
 - f. Mathematical induction
 - g. Strong induction
 - h. Recursive mathematical definitions
 - i. Well orderings
- D. Basics of Counting
 - a. Counting arguments
 - b. Sum and product rule
 - c. Inclusion-exclusion principle
 - d. Arithmetic and geometric progressions
 - e. Fibonacci numbers
 - f. The pigeonhole principle
 - g. Permutations and combinations
 - h. Basic definitions
 - i. Pascal's identity
 - j. The binomial theorem
 - k. Solving recurrence relations
 - I. Common examples
 - m. The Master theorem
- E. Graphs and Trees
 - a. Trees
 - b. Undirected graphs
 - c. Directed graphs
 - d. Spanning trees/forests
 - e. Traversal strategies
- F. Discrete Probability
 - a. Finite probability space, probability measure, events
 - b. Conditional probability, independence, Bayes' theorem
 - c. Integer random variables, expectation
 - d. Law of large numbers

e.

4. Methods of Instruction:

Activity: The student will analyze a problem to create relevant recurrence equations. **Lecture:** The instructor will teach the student how to relate the ideas of mathematical

induction to recursion and recursively defined structures. **Projects:**

Online Adaptation: Discussion

1. Methods of Evaluation: Describe the general types of evaluations for this course and provide at least two, specific examples.

Typical classroom assessment techniques

Exams/Tests --

Quizzes -- The student will be quizzed on the different traversal methods for trees and graphs.

Home Work -- Students will describe how formal tools of symbolic logic are used to model real-life situations, including those arising in computing contexts such as program correctness, database queries, and algorithms.

Final Exam -- In the final exam, the student will apply the binomial theorem to independent events and Bayes? theorem to dependent events

Letter Grade or P/NP

2. Assignments: State the general types of assignments for this course under the following categories and provide at least two specific examples for each section.

- A. Reading Assignments
- Read Section 9.4 on the Pigeonhole Principle.
- B. Writing Assignments
 For Section 4.2 on Direct Proof and Counterexample: Divisibility, complete problems 1-31.
- C. Other Assignments

D.

3. Required Materials

A. EXAMPLES of typical college-level textbooks (for degree-applicable courses) or other print materials.

Book #1:

Author:Epp, SusannaTitle:Discrete Mathematics with ApplicationsPublisher:CengageDate of Publication:2019Edition:5th

B. Other required materials/supplies.