

COMS 216 - Programming Concepts and Methodology II Course Outline

Approval Date: 03/10/2022 Effective Date: 08/12/2022

SECTION A

Unique ID NumberCCC000567109Discipline(s)Computer ScienceDivisionCareer Education and Workforce DevelopmentSubject AreaComputer StudiesSubject CodeCOMSCourse Number216Course TitleProgramming Concepts and Methodology IITOP Code/SAM Code0707.10 - Computer Programming/Programmer, General* /
D - Possible OccupationalRationale for adding this course
to the curriculumFive-year review- matching C ID COMP 132Units3Cross ListN/ATypical Course Weeks18Total Instructional HoursInterset

Contact Hours

Lecture 54.00

Lab 18.00

Activity 0.00

Work Experience 0.00

Outside of Class Hours 108.00

Total Contact Hours 72

Total Student Hours 180

Open Entry/Open Exit No

Maximum Enrollment 30

Grading Option Letter Grade or P/NP

Distance Education Mode of On-Campus Instruction Hybrid Entirely Online Online with Proctored Exams

SECTION B

General Education Information:

SECTION C

Course Description

Repeatability May be repeated 0 times

Catalog Application of software engineering techniques to the design and **Description** development of large programs; data abstraction and structures and associated algorithms.

Schedule

Description

SECTION D

Condition on Enrollment

1a. Prerequisite(s)

- COMS 215 with a minimum grade of C or better
- 1b. Corequisite(s): None

1c. Recommended: None

1d. Limitation on Enrollment: None

SECTION E

Course Outline Information

1. Student Learning Outcomes:

- A. Demonstrate application of advanced programming techniques and development of large programs.
- 2. Course Objectives: Upon completion of this course, the student will be able to:
 - A. Write programs that use each of the following data structures: arrays, records, strings, linked lists, stacks, queues, and hash tables
 - B. Implement, test, and debug simple recursive functions and procedures
 - C. Evaluate tradeoffs in lifetime management (reference counting vs. garbage collection)
 - D. Explain how abstraction mechanisms support the creation of reusable software components
 - E. Design, implement, test, and debug simple programs in an object-oriented programming language
 - F. Compare and contrast object-oriented analysis and design with structured analysis and design

G.

3. Course Content

Course Content:

I. Programming Fundamentals (PF)

PF3. Fundamental data structures Minimum coverage time: 12 hours

Topics

- A. Primitive types
- B. Arrays
- C. Records
- D. Strings and string processing
- E. Data representation in memory
- F. Static, stack, and heap allocation
- G. Runtime storage management
- H. Pointers and references
- I. Linked structures
- J. Implementation strategies for stacks, queues, and hash tables
- K. Implementation strategies for trees
- L. Strategies for choosing the right data structure

PF4. Recursion

Minimum coverage time: 5 hours

Topics

- A. The concept of recursion
- B. Recursive mathematical functions
- C. Simple recursive procedures
- D. Divide-and-conquer strategies
- E. Recursive backtracking
- F. Implementation of recursion
- II. Programming Languages (PL)

PL4. Declarations and types Minimum coverage time: 3 hours

Topics

- A. The conception of types as a set of values together with a set of operations
- B. Declaration models (binding, visibility, scope, and lifetime)
- C. Overview of type-checking
- D. Garbage collection

PL5. Abstraction Mechanisms Minimum coverage time: 3 hours

Topics

- A. Procedures, functions, and iterators as abstraction mechanisms
- B. Parameterization mechanisms (reference vs. value)
- C. Activation records and storage management
- D. Type parameters and parameterized types templates or generics
- E. Modules in programming languages

PL6. Object-oriented programming Minimum coverage time: 10 hours

Topics

- A. Object-oriented design
- B. Encapsulation and information-hiding
- C. Separation of behavior and implementation
- D. Classes and subclasses
- E. Inheritance (overriding, dynamic dispatch)
- F. Polymorphism (subtype polymorphism vs. inheritance)
- G. Class hierarchies
- H. Collection classes and iteration protocols
- I. Internal representations of objects and method tables
- III. Software Engineering (SE)

SE1. Software design Minimum coverage time: 8 hours

Topics

- A. Fundamental design concepts and principles
- B. Design strategy

C.

4. Methods of Instruction:

Discussion: Discuss why a Software Development Kit is necessary **Lab:** Write a program that calculates mortgage interest for a 30 year loan **Lecture:** Discuss the history of Advanced Object-Oriented programming **Projects:** Write a program that tracks the weather in Napa for 90 days. The program must include high temperature, low temperature, humidity, and precipitation.

5. Methods of Evaluation: Describe the general types of evaluations for this course and provide at least two, specific examples.

Typical classroom assessment techniques

Exams/Tests -- At least two exams (midterm and final) will be administered with possible multiple choice/essay/true-false/short answer questions

Quizzes -- Possible unannounced quizzes on the course material covered. Possible short answer/true-false/multiple choice/essay questions.

Projects -- Write a program that keeps track of grades. The section has 30 students. Must calculate overall average. Final exam weight set to 25%, Midterm Exam set to 15%, Participation 10%, and Homework at 50%. Should show overall course average.

Home Work -- Example test questions: Essay: Provide a brief history of C++.

Lab Activities -- Example lab activity: Write a program that calculates overtime after 8 hours of work. Regular pay is set to \$12.50 hour. Overtime is set to 1.5. If over 12 hours, pay is set to 2.0.

Final Exam -- Comprehensive exam with possible multiple choice/true-false/shortanswer/essay questions

Mid Term -- Comprehensive exam with possible multiple choice/true-false/shortanswer/essay questions

Letter Grade or P/NP

6. Assignments: State the general types of assignments for this course under the following categories and provide at least two specific examples for each section.

A. Reading Assignments

Read Chapter 1 related to the history of C++.

- B. Writing Assignments Write a one-page essay on the concept of recursion.
- C. Other Assignments Write a program that uses each of the following data structures: arrays, records, and strings.

7. Required Materials

A. EXAMPLES of typical college-level textbooks (for degree-applicable courses) or other print materials.

Book #1:Author:Malik, D. S.Title:C++ Programming: Program Design Including Data StructuresPublisher:CengageDate of Publication:2017Edition:8

B. Other required materials/supplies.