

COMS 215 - Programming Concepts and Methodology I Course
Outline
Approval Date: 04/23/2020
Effective Date: 08/13/2021

SECTION A

Unique ID Number CCC000100645

Discipline(s) Computer Science

Division Career Education and Workforce Development

Subject Area Computer Studies

Subject Code COMS

Course Number 215

Course Title Programming Concepts and Methodology I

TOP Code/SAM Code 0707.10 - Computer Programming/Programmer, General* / D -
Possible Occupational

Rationale for adding
this course to the

curriculum

Non-substantive modifications to Course Description, PreRequisite
changed to Recommended Prep and Course Content. Addition of
key terms from C-ID Descriptor.

Units 3

Cross List N/A

Typical Course Weeks 18

Total Instructional Hours

 Contact Hours

Lecture 54.00

Lab 18.00

Activity 0.00

Work Experience 0.00

Outside of Class Hours 108.00

Total Contact Hours 72

Total Student Hours 180

Open Entry/Open Exit No

Maximum Enrollment 30

Grading Option Letter Grade or P/NP

Distance Education
Mode of Instruction

On-Campus
Hybrid

Entirely Online

SECTION B

General Education Information:

SECTION C

Course Description

Repeatability May be repeated 0 times

Catalog
Description

This is an introductory course to the fundamental concepts of computer
science. Students will be exposed to a high level programming theories and
methodologies, including object-oriented programming.

Schedule
Description

SECTION D

Condition on Enrollment

1a. Prerequisite(s): None

1b. Corequisite(s): None

1c. Recommended

 COMS 120

1d. Limitation on Enrollment: None

SECTION E

Course Outline Information

1. Student Learning Outcomes:

A. Design, code, test, and debug a program using an object oriented programming
language.

2. Course Objectives: Upon completion of this course, the student will be able to:

A. At the conclusion of this course, the student should be able to: Design, implement, test,

and debug a program that uses each of the following fundamental programming
constructs: basic computation, simple I/O, standard conditional and iterative structures,
and the definition of functions.

B. Use pseudocode or a programming language to implement, test, and debug algorithms
for solving simple problems.

C. Summarize the evolution of programming languages illustrating how this history has led

to the paradigms available today.
D. Demonstrate different forms of binding, visibility, scoping, and lifetime management.

E.

3. Course Content

I. Programming Fundamentals (PF)

PF1. Fundamental programming constructs

Minimum coverage time: 9 hours

Topics

A. Basic syntax and semantics of a higher-level language

B. Variables, types, expressions, and assignment
C. Simple I/O

D. Conditional and iterative control structures
E. Functions and parameter passing
F. Structured decomposition

 Learning Outcomes

A. Analyze and explain the behavior of simple programs involving the fundamental

programming constructs covered by this unit;
B. Modify and expand short programs that use standard conditional and iterative control

structures and functions;

C. Design, implement, test, and debug a program that uses each of the following
fundamental programming constructs: basic computation, simple I/O, standard
conditional and iterative structures, and the definition of functions;

D. Choose appropriate conditional and iteration constructs for a given programming task;
E. Apply the techniques of structured (functional) decomposition to break a program into

smaller pieces; and

F. Describe the mechanics of parameter passing.

PF2. Algorithms and problem-solving

Minimum coverage time: 6 hours

Topics

A. Problem-solving strategies
B. The role of algorithms in the problem-solving process
C. Implementation strategies for algorithms

D. Debugging strategies
E. The concept and properties of algorithms

Learning outcomes

A. Discuss the importance of algorithms in the problem-solving process;

B. Identify the necessary properties of good algorithms;
C. Create algorithms for solving simple problems;
D. Use pseudocode or a programming language to implement, test, and debug algorithms

for solving simple problems; and
E. Describe strategies that are useful in debugging.

II. Programming Languages (PL)
PL1. Overview of programming languages

Minimum coverage time: 2 hours

Topics

A. History of programming languages

B. Brief survey of programming paradigms
C. Procedural languages
D. Object-oriented languages

Learning outcomes

A. Summarize the evolution of programming languages illustrating how this history has led

to the paradigms available today; and
B. Identify at least one distinguishing characteristic for each of the programming paradigms

covered in this unit.

PL4. Declarations and types

Minimum coverage time: 3 hours

Topics

A. The conception of types as a set of values together with a set of operations Declaration

models (binding, visibility, scope, and lifetime)
B. Overview of type-checking

Learning outcomes

A. Explain the value of declaration models, especially with respect to programming-in-the-
large;

B. Identify and describe the properties of a variable such as its associated address, value,
scope, persistence, and size;

C. Discuss type incompatibility;

D. Demonstrate different forms of binding, visibility, scoping, and lifetime management; and
E. Defend the importance of types and type-checking in providing abstraction and safety.

Topics fulfilling these tasks and outcomes could include OOPS and other programming
elements. This course is recommended to contain hands-on programming and problem solving
tasks.
4. Methods of Instruction:

Discussion: Discuss the history of Object Oriented programming.

Lab:
Lecture: Example: Lecture on the history of Object Oriented programming.

Projects: Create a programming language to complete a task in your day-to-day life. Test
and Debug program, and present it to the class.
Online Adaptation: Activity, Discussion, Group Work, Lecture

4. Methods of Evaluation: Describe the general types of evaluations for this course and
provide at least two, specific examples.

Typical classroom assessment techniques
Exams/Tests -- Example test questions: Essay: Provide a brief history of C++. Fill-in: What is

a, "Loop" as it relates to C++.
Quizzes -- Multiple choice questions based on chapter reading.
Projects --

Class Participation --
Class Work --
Home Work --

Lab Activities -- Programming assignments

Final Exam --
Mid Term --

Additional assessment information:

Example test questions:
Essay: Provide a brief history of C++.
Fill-in: What is a, "Loop" as it relates to C++.
Letter Grade or P/NP

5. Assignments: State the general types of assignments for this course under the following
categories and provide at least two specific examples for each section.

A. Reading Assignments
Read chapter 1 Getting Started.
Read chapter 2 Data Types, Declarations, and Displays.

B. Writing Assignments
Complete case problems 1 and 2 at the end of chapter 1.
Complete case problems 1-3at the end of chapter 2.

C. Other Assignments
Complete Tutorial 1 in the textbook.
Complete Tutorial 2 in the textbook.

6. Required Materials

A. EXAMPLES of typical college-level textbooks (for degree-applicable courses) or
other print materials.

Book #1:

Author: Deitel, P.

Title: C++ How to Program (Early Objects Version)

Publisher: Pearson

Date of
Publication:

 2014

Edition: 9

Book #2:

Author: Gary J. Bronson

Title: A FIRST BOOK OF C++

Publisher: Cengage

Date of

Publication:
 2012

Edition:

Book #3:

Author: D. S. Malik

Title: Bundle: C++ Programming: From Problem Analysis to Program Design,
Loose-leaf Version, 8th + MindTap Computer Science

Publisher: Cengage Learning

Date of

Publication:
 2017

Edition:

B. Other required materials/supplies.

